ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Speech Emotion Recognition 연구 기록
    ML/음성인식 2020. 1. 21. 16:36
    반응형

    맨날 공책에 연구기록 정리해놔도 다 없어진다. 그래서 이제 웹에 저장해볼까 한다.

    1. CRNN, layer = [2, 2, 3], filters = [64, 128, 256]

    epoch 19 loss 0.6085 acc 0.8649
    epoch 41 loss 0.6767 acc 0.8198
    epoch 15 loss 0.5758 acc 0.8378
    epoch 37 loss 0.6570 acc 0.8108

    2. CRNN, layer = [2, 3, 3], filters = [64, 128, 256]

    epoch 10 loss 0.8609 acc 0.7297
    epoch 7 loss 0.6213 acc 0.7838
    epoch 41 loss 0.8283 acc 0.8378
    epoch 35 loss 0.6847 acc 0.8468

    3. CRNN, layer = [3, 3, 3], filters = [64, 128, 256]

    epoch 28 loss 0.6859 acc 0.8198
    epoch 33 loss 0.7510 acc 0.8198
    epoch 17 loss 0.7368 acc 0.8288
    epoch 17 loss 1.2993 acc 0.6757

    4. CRNN, layer = [2, 2, 2], filters = [64, 128, 256]

    epoch 16 loss 0.6999 acc 0.8108
    epoch 18 loss 0.5953 acc 0.8198
    epoch 8 loss 0.7030 acc 0.7568
    epoch 11 loss 0.6641 acc 0.8288

    5. resnetRNN, layer = [5, 4, 4], filters = [64, 128, 256]

    epoch 4 loss 0.7461 acc 0.7568
    epoch 9 loss 0.9223 acc 0.6937

    6. resnetRNN, layer = [3, 2, 2], filters = [64, 128, 256]

    epoch 4 loss 0.9112 acc 0.7027
    epoch 7 loss 0.7967 acc 0.7117

    7. resnetRNN, layer = [7, 6, 6], filters = [64, 128, 256]

    epoch 13 loss 1.5899 acc 0.6757
    epoch 9 loss 0.9989 acc 0.7027

    8. resnetRNN, layer = [9, 8, 8], filters = [64, 128, 256]

    epoch 18 loss 1.2800 acc 0.6667
    epoch 4 loss 1.0925 acc 0.5856

    9. resnetRNN, layer = [3, 4, 4], filters = [64, 128, 256]

    epoch 14 loss 0.9747 acc 0.6757
    epoch 14 loss 0.8728 acc 0.7748
    epoch 10 loss 0.8545 acc 0.7297
    epoch 5 loss 0.8566 acc 0.6847

    10. resnetRNN, layer = [3, 4, 4], filters = [64, 128, 256], non_initialization

    epoch 14 loss 0.8709 acc 0.7658
    epoch 9 loss 0.9039 acc 0.7568

    11. resnetRNN, layer = [5, 4, 4], filters = [64, 128, 256], non_initialization

    epoch 14 loss 0.9539 acc 0.7658
    epoch 13 loss 0.9006 acc 0.7748

    12. resnetRNN, layer = [7, 6, 6], filters = [64, 128, 256], non_initialization

    epoch 11 loss 1.2741 acc 0.5946
    epoch 19 loss 1.5301 acc 0.6577

    13. resnetRNN, layer = [3, 2, 2], filters = [64, 128, 256], non_initialization

    epoch 27 loss 1.6902 acc 0.6306
    epoch 12 loss 1.6095 acc 0.6667

    14. CRNN, layer = [3, 2, 2], filters = [64, 128, 256]

    epoch 20 loss 1.1918 acc 0.7568
    epoch 18 loss 1.2211 acc 0.7568

    15. CRNN, layer = [3, 4, 4], filters = [64, 128, 256]

    Epoch 16 (Test) Loss 0.9358 Acc 0.7477
    Epoch 16 (Test) Loss 1.0985 Acc 0.7838
    Epoch 28 (Test) Loss 1.1612 Acc 0.7477
    Epoch 20 (Test) Loss 1.0648 Acc 0.7568

    16. googlenetRNN, module = [1, 1], filters = [64, 128]

    Epoch 16 (Test) Loss 0.9348 Acc 0.7944
    Epoch 16 (Test) Loss 0.8571 Acc 0.7757
    Epoch 13 (Test) Loss 1.0103 Acc 0.7570
    Epoch 14 (Test) Loss 0.6934 Acc 0.8037

    17. googlenetRNN, module = [1, 1, 1], filters = [64, 128, 128]

    Epoch 22 (Test) Loss 0.8625 Acc 0.8224
    Epoch 9 (Test) Loss 0.8106 Acc 0.7757
    Epoch 8 (Test) Loss 0.6882 Acc 0.7944
    Epoch 8 (Test) Loss 0.7558 Acc 0.8037

    18. googlenetRNN, module = [1, 2, 1], filters = [64, 128, 128]

    Epoch 5 (Test) Loss 0.8984 Acc 0.7196
    Epoch 17 (Test) Loss 0.7758 Acc 0.8037
    Epoch 7 (Test) Loss 1.0300 Acc 0.7196
    Epoch 11 (Test) Loss 0.8914 Acc 0.6916

    19. googlenetRNN, module = [1, 1, 1, 1], filters = [64, 128, 128], maxpooling * 3

    Epoch 9 (Test) Loss 0.8737 Acc 0.7944
    Epoch 8 (Test) Loss 0.6057 Acc 0.7757
    Epoch 10 (Test) Loss 0.8225 Acc 0.7570
    Epoch 4 (Test) Loss 0.9024 Acc 0.7664

    20. googlenetRNN, module = [1, 2, 1, 1], filters = [64, 128, 128], maxpooling * 3

    Epoch 11 (Test) Loss 0.8609 Acc 0.7383
    Epoch 20 (Test) Loss 0.9937 Acc 0.7944
    Epoch 4 (Test) Loss 0.8394 Acc 0.7103
    Epoch 11 (Test) Loss 0.7857 Acc 0.7477

    반응형
Designed by Tistory.