-
Speech Emotion Recognition 연구 기록ML/음성인식 2020. 1. 21. 16:36반응형
맨날 공책에 연구기록 정리해놔도 다 없어진다. 그래서 이제 웹에 저장해볼까 한다.
1. CRNN, layer = [2, 2, 3], filters = [64, 128, 256]
epoch 19 loss 0.6085 acc 0.8649
epoch 41 loss 0.6767 acc 0.8198
epoch 15 loss 0.5758 acc 0.8378
epoch 37 loss 0.6570 acc 0.81082. CRNN, layer = [2, 3, 3], filters = [64, 128, 256]
epoch 10 loss 0.8609 acc 0.7297
epoch 7 loss 0.6213 acc 0.7838
epoch 41 loss 0.8283 acc 0.8378
epoch 35 loss 0.6847 acc 0.84683. CRNN, layer = [3, 3, 3], filters = [64, 128, 256]
epoch 28 loss 0.6859 acc 0.8198
epoch 33 loss 0.7510 acc 0.8198
epoch 17 loss 0.7368 acc 0.8288
epoch 17 loss 1.2993 acc 0.67574. CRNN, layer = [2, 2, 2], filters = [64, 128, 256]
epoch 16 loss 0.6999 acc 0.8108
epoch 18 loss 0.5953 acc 0.8198
epoch 8 loss 0.7030 acc 0.7568
epoch 11 loss 0.6641 acc 0.82885. resnetRNN, layer = [5, 4, 4], filters = [64, 128, 256]
epoch 4 loss 0.7461 acc 0.7568
epoch 9 loss 0.9223 acc 0.69376. resnetRNN, layer = [3, 2, 2], filters = [64, 128, 256]
epoch 4 loss 0.9112 acc 0.7027
epoch 7 loss 0.7967 acc 0.71177. resnetRNN, layer = [7, 6, 6], filters = [64, 128, 256]
epoch 13 loss 1.5899 acc 0.6757
epoch 9 loss 0.9989 acc 0.70278. resnetRNN, layer = [9, 8, 8], filters = [64, 128, 256]
epoch 18 loss 1.2800 acc 0.6667
epoch 4 loss 1.0925 acc 0.58569. resnetRNN, layer = [3, 4, 4], filters = [64, 128, 256]
epoch 14 loss 0.9747 acc 0.6757
epoch 14 loss 0.8728 acc 0.7748
epoch 10 loss 0.8545 acc 0.7297
epoch 5 loss 0.8566 acc 0.684710. resnetRNN, layer = [3, 4, 4], filters = [64, 128, 256], non_initialization
epoch 14 loss 0.8709 acc 0.7658
epoch 9 loss 0.9039 acc 0.756811. resnetRNN, layer = [5, 4, 4], filters = [64, 128, 256], non_initialization
epoch 14 loss 0.9539 acc 0.7658
epoch 13 loss 0.9006 acc 0.774812. resnetRNN, layer = [7, 6, 6], filters = [64, 128, 256], non_initialization
epoch 11 loss 1.2741 acc 0.5946
epoch 19 loss 1.5301 acc 0.657713. resnetRNN, layer = [3, 2, 2], filters = [64, 128, 256], non_initialization
epoch 27 loss 1.6902 acc 0.6306
epoch 12 loss 1.6095 acc 0.666714. CRNN, layer = [3, 2, 2], filters = [64, 128, 256]
epoch 20 loss 1.1918 acc 0.7568
epoch 18 loss 1.2211 acc 0.756815. CRNN, layer = [3, 4, 4], filters = [64, 128, 256]
Epoch 16 (Test) Loss 0.9358 Acc 0.7477
Epoch 16 (Test) Loss 1.0985 Acc 0.7838
Epoch 28 (Test) Loss 1.1612 Acc 0.7477
Epoch 20 (Test) Loss 1.0648 Acc 0.756816. googlenetRNN, module = [1, 1], filters = [64, 128]
Epoch 16 (Test) Loss 0.9348 Acc 0.7944
Epoch 16 (Test) Loss 0.8571 Acc 0.7757
Epoch 13 (Test) Loss 1.0103 Acc 0.7570
Epoch 14 (Test) Loss 0.6934 Acc 0.803717. googlenetRNN, module = [1, 1, 1], filters = [64, 128, 128]
Epoch 22 (Test) Loss 0.8625 Acc 0.8224
Epoch 9 (Test) Loss 0.8106 Acc 0.7757
Epoch 8 (Test) Loss 0.6882 Acc 0.7944
Epoch 8 (Test) Loss 0.7558 Acc 0.803718. googlenetRNN, module = [1, 2, 1], filters = [64, 128, 128]
Epoch 5 (Test) Loss 0.8984 Acc 0.7196
Epoch 17 (Test) Loss 0.7758 Acc 0.8037
Epoch 7 (Test) Loss 1.0300 Acc 0.7196
Epoch 11 (Test) Loss 0.8914 Acc 0.691619. googlenetRNN, module = [1, 1, 1, 1], filters = [64, 128, 128], maxpooling * 3
Epoch 9 (Test) Loss 0.8737 Acc 0.7944
Epoch 8 (Test) Loss 0.6057 Acc 0.7757
Epoch 10 (Test) Loss 0.8225 Acc 0.7570
Epoch 4 (Test) Loss 0.9024 Acc 0.766420. googlenetRNN, module = [1, 2, 1, 1], filters = [64, 128, 128], maxpooling * 3
Epoch 11 (Test) Loss 0.8609 Acc 0.7383
Epoch 20 (Test) Loss 0.9937 Acc 0.7944
Epoch 4 (Test) Loss 0.8394 Acc 0.7103
Epoch 11 (Test) Loss 0.7857 Acc 0.7477반응형'ML > 음성인식' 카테고리의 다른 글
Listen, Attend and Spell 논문 리뷰 (0) 2020.04.08 Kaldi 예제 Voxforge 데이터 (0) 2020.01.21 Kaldi, Kaldi gstreamer 설치 및 예제 실행 (0) 2020.01.21 Phoneme recognition (Spikegram, MFCC, Spectrogram, Melspectrogram) (0) 2020.01.21